
As a programmer you should already be familiar with Visual Basics “in-built” data types:

Integer – whole numbers

Decimal – real/decimal numbers

String – characters

Char – single character

Boolean – logical true or false

Currency – monetary values

Date
-a date

Simple arrays (tables) are declared to be of one of the above types. However, programs often require that data is of a combination of data types. For example, consider the following details about a person and the type of data to store the details in:

Details

Data Type

Name

String
limit to 12 characters

Address
String

limit to 20 characters

Post code
String

limit to 15 characters

Date of birth
Date

Salary

Currency

Visual Basic allows the programmer to define a data type to be a combination of in-built data types. These are called User Defined Data Types and they make using arrays and files much easier.

The above person details can be defined as a data type as shown below:

Type PersonDetailsType

<VBFixed String(12)> PUBLIC Name as String

<VBFixed String(20)> PUBLIC Address as String

<VBFixed String(15)> PUBLIC PostCode as String

DateOfBirth as Date

Salary as Currency

End Type

Which creates a new Data Type called PersonDetailsType thus

This can now be used in the same way as other data types to create variables for use in your program.

Declaration:

DIM personRec as PersonDetailsType
Which creates the variable personRec

Each field (or column) within the data structure can be referenced by name (another advantage of user defined types)

PersonRec.Name = “Jim”

PersonRec.Address = “1 High St”

PersonRec.PostCode = “QWE 156”

PersonRec.DateOfBirth = “12/4/85”

PersonRec.Salary = 12500

Gives us:

This can now be used to great effect with Arrays and especially with Files.

Read on

User Defined Types with Arrays

An Array can be declared and manipulated in the same way as a single dimension array (but used as if it were a two dimensional array).

Example:

DIM PersonArray(50) as PersonDetailsType

Giving:

Items may be added thus:

PersonArray(1).Name = “Jim”

PersonArray(1).Address = “1 High St.”

PersonArray(1).PostCode = “QWE 156”

PersonArray(1).DateOfBirth = “12/2/85”

PersonArray(1).Salary = 12500

Where the index is the array row.

A loop is often used to print the contents of the array:

For x = 1 to 50

Console.Writeline(“{0}”, PersonArray(x).Name)

Console.Writeline(“{0}”, PersonArray(x).Address)

Console.Writeline(“{0}”, PersonArray(x).PostCode)

Console.Writeline(“{0}”, PersonArray(x).DateOfBirth)

Console.Writeline(“{0}”, Picout.print PersonArray(x).Salary)

Next x

This loop will write out all 50 rows from the array.

User Defined Types with Files

Perhaps the most valuable use of User Defined Types is when they are used to define a record structure for a file.

The record structure is defined as a User Defined Type.

Using the PersonDetailsType declared earlier.

Type PersonDetailsType

<VBFixed String(12)> PUBLIC Name as String

<VBFixed String(20)> PUBLIC Address as String

<VBFixed String(15)> PUBLIC PostCode as String

DateOfBirth as Date

Salary as Currency

End Type

Public PersonRec as PersonDetailsType

LastPersonRecord as integer

 {used to count the records on the file.

Each record is now treated as a single”block” of data. It is written and read to/from the file as a block. Within the block each item can be referenced by name.

Example:

PersonRec.Name = “Jim”

PersonRec.Address = “1 High St”

PersonRec.PostCode = “QWE 156”

PersonRec.DateOfBirth = 12/2/85

PersonRec.Salary = 12500

Writing to the file

Once the “block”/record has been filled with data it can be written to the file:

Put #1, position, PersonRec

Put
-is the vb.net command to write to a file.

#1
-is file number (see open statement)

position
-is record number (each record in the file is numbered

PersonRec
-is the record “block” to be written to the file.

Reading from the file

Get #1, position, PersonRec

Get
-is the vb.net command to read from a file

#1
-is file number (see open statement)

position
-is record number (each record in the file is numbered

PersonRec
-is the record “block” to be written to the file.

Once the record has been read from the file the contents can be used (i.e. printed, displayed, or changed and written back to the file)

To print the contents of the record:

Console.Writeline(“{0}”, PersonRec.Name)

Console.Writeline(“{0}”, PersonRec.Address)

Console.Writeline(“{0}”, PersonRec.PostCode)

Console.Writeline(“{0}”, PersonRec.DateOfBirth)

Console.Writeline(“{0}”, PersonRec.Salary)

To change the value of salary and write the record back:

PersonRec.Salary = 14000

Put #1, position, PersonRec

Note position must be the same value for both the read (Get) and the write (Put) so that the record is placed back into the file exactly where it was read from.

Exercise:

1) A program requires a file to store the following information about stock items:

StockCode 6 characters, Description of the item 20 characters, Purchase Price, Selling Price, Quantity in stock, and Date Last Purchased.

a) write the User Defined Data Type for the visual basic module.

b) write the declaration of the record.

c) give an example of how data would be placed in the record (“block”).

d) give an example of how the record would be written to the file.

e) give an example of how the record would be read from the file.

f) give an example of how the data would be changed and written

back to the file.

Ch 8 User Defined Data Types

Name

Address

PostCode

DateOfBirth

Salary

PersonDetailsType

Name

Address

PostCode

DateOfBirth

Salary

personRec

Name

Address

PostCode

DateOfBirth

Salary

personRec

Jim

1 High St

QWE 156

12/4/85

12500

Name

Address

PostCode

DateOfBirth

Salary

PersonArray(1)

PersonArray(2)

PersonArray(3)

PersonArray(50)

Ch8-UserDefType Will
Page 1

