�

Central Processing Unit

�EMBED MSDraw.1.01���

REGISTERS

MAR	Memory Address Register 		

MBR	Memory Buffer Register

CIR 	Current Instruction Register.	Temp. storage location for 'words' read from memory.

	 Could be data or program instruction.

Instruction Register -program instructions

Data Register		-data

PROGRAM 	= Sequence of instructions

FETCH EXECUTE CYCLE = �EMBED MSDraw.1.01���

This cycle of events is called the Fetch Execute Cycle

�
The Central Processing Unit

	

�EMBED MSDraw.1.01���

PC		Program counter

			Location in memory of next instruction

			-incremented after each Fetch.

CIR	Current Instruction Register

			Intruction read from memory.

MBR	Memory Buffer Register

			Temp. storage for data between memory and Accumulator.

MAR	Memory Address Register

			Address of data in memory to be

			Fetched to MBR

Accumulator

			General registers in the ALU.	Working area for data (add, sub, etc.)

Memory Model of a Program

Program has 4 segments:

�

�
The Fetch Execute Cycle

Fetch

	PC copied to MAR -location of next instruction

	Memory to MBR -contents of location is	read to MBR

	Increment PC		-Point to location of following instruction

	MBR copied to CIR -ready to be decoded.

Execute

	CIR instruction decoded by the Control Unit

	Instruction executed	 by the Control Unit

	Cycle repeated (until instruction is STOP)	

FEC Flowchart

	�EMBED MSDraw.1.01���

Exercise 1								

Draw a labelled diagram of the CPU & indicate each step of the Fetch Execute Cycle.

�
MACHINE INSTRUCTIONS

INSTRUCTION SET = All available instructions

TYPE OF INSTRUCTION

	=Arithmetic and logical operations

	=Input and output operations

	=Branching -sequence of instructions

	=Moving data -inside CPU or between CPU & Memory

INSTRUCTION FORMAT

	�EMBED MSDraw.1.01���

OPCODE	operation to be performed ADD, MOVE, etc.

OPERAND Memory address of data to be used.

-Three Address Instruction

	Operation involves three objects:

	ADD a,b,c	;add b & c store result in a

	�EMBED MSDraw.1.01���

-Two Address Instruction

	Operation involves two objects:

	ADD a,b		;add a to b

	

	�EMBED MSDraw.1.01���

-One Address Instruction

	Operation involves one object (assume use of Accumulator):

	Three instructions to increment a number...

	lda X		;place x into Accumulator

	add Y		;add Y to value in Accumulator

	sto Z		;Store value in Accumulator at Z

	

	�EMBED MSDraw.1.01���

-No Address Instruction

	Uses the Stack.

	Push		;contents of accumulator placed on stack.

	Pop		;item at top of stack placed in accumulator (& removed from stack)

Exercise 2								

1)	What is the highest memory location that can be addressed in each of the instruction formats?

	3 address = 4 bits = 15

	2 address = 6 bits = 63

	1 address = 12 bits = 4095

�
Typical Instruction Set

Actual instructions depend on individual computer.

Operation			80x86 processor

Add				ADD		Addition

Subtract			SUB		Subtraction

Multiply			MUL		Multiplication

Divide				DIV		Division

Branch				Jn		Jump (various)

Register			MOV	 Move data between registers

Stack				PUSH	 	Place on stack

				POP	 	Remove from stack

Input				IN		Input from port

Output				OUT		Output to port

Logical:

 And				AND

 Or				OR

 Not				NOT

�EMBED MSDraw.1.01���

Example Assembler Program

; Program to add two numbers 16 & 32

;

mov	ax,10h		;move 10hex to acc.

add	ax,20h		;add 20hex to value in acc.

int	21h		;interrupt 21 output acc to screen.

Exercise 3									

Complete the Assembler tutorial & exercises

�
INPUT/OUTPUT

Instructions to transfer data between peripherals and main memory.

Direct Memory Address DMA

	Data transfer controlled by peripheral (CPU continues normal processing)

	Data transfered in block.

Example : Read data from disk to memory

	

	�EMBED MSDraw.1.01���

PROGRAMMED INPUT/OUTPUT

Four Input/output instructions:

a) Input -transfer data from peripheral to CPU.

b) Output -transfer data from CPU to Peripheral.

c) Set Control Flags

d) Test Control Flags

�EMBED MSDraw.1.01���

Flag (busy)	Set by CPU when data transfer in process.

Flag (done)	Set by peripheral when data transfer complete.

Data Buffer	Stores data during transfer.

Program control via:

a) Interrupt	-from peripheral to tell CPU transfer complete.

b) Polling	-Set busy flag & test done flag until transfer complete.

		(inefficient -waste time continually checking)

�

Memory Addressing Modes

The physical memory addresses used by the hardware are the actual address in memory. Addressing memory locations directly restricts the size of usable memory. Therefore a method of addressing locations beyond this limit are required. The addressing mode used is indicated in the operand of an instruction.

The following addressing modes are common to most computers:

Register Addressing

Data moved between registers in the CPU.

ie

	MOV	AX,BX

	MOV	DX,CX

	MOV	DI,SI

Immediate Addressing

Moving a constant numeric value to a register, or to a memory location.

ie

	MOV	AX,5

	MOV	BL,RED	; where RED has been defined as a numeric value

	MOV ADD1,RED ;where ADD1 has been defined as a memory address

Direct Addressing

Moving data from a memory location to a register, or vice versa.

ie

	MOV AL,ADD1	;where ADD1 has been defined as a memory address

	MOV ADD2,AH

Indirect Addressing

Using the registers to point to a memory location which itself holds a pointer to the data to be used.

ie

	MOV ADD1,5	;ADD1 stores the value 5

	MOV	SI,ADD1	;register SI stores the address of ADD1

	MOV	AX,[SI]	;AX stores the value from the address in SI

L11-FEC-std(lite)		� PAGE �8�

 The Fetch Execute Cycle

ES

SS

DS

CS

Extra

Stack

Data

Code

Temporary Storage

Stores Instruction location when program branches.

Variables

Instruction Sequence

