Data Representation III

 How do we represent fractions in a computer???

Fractional binary postions :

�EMBED MSDraw.1.01���

The rules for converting decimal fractions to binary are:

 Repeat

 Multiply FRACTION by 2 giving RESULT.

 Move the whole number from RESULT to ANSWER.

 Move fractional part of RESULT to FRACTION.

 Until required precision is reached.

From the table we know that decimal 0.25 is binary 0.01

To prove it:

 FRACTION RESULT ANSWER

 0.25 * 2 		0.50 0

 0.50 * 2 		1.00 1

 0.00

 Read down = 0.01

Example convert the decimal fraction 0.15 to binary to four places.

 FRACTION RESULT ANSWER

 0.15 * 2 		0.30 0

 0.30 * 2 		0.60 0

 0.60 * 2 		1.20 1

 0.20 * 2 		0.40 0

 Read down = 0.0010

Exercise 3.1

Prove that Decimal = binary

 a) 0.75		0.11

 b) 0.625 	0.101

 c) 2.25 	10.01

Fixed Point Arithmetic

One method of storing 'real' numbers (ie numbers with fractional parts) a fixed position for the decimal point is chosen. In the example below the point is fixed between bit 2 and bit 3.

		�EMBED MSDraw.1.01���

Note. Only by knowing the fixed position of the point can you determine the value of the number stored. The programmer must keep track of the position of the point.

Exercise

a)	Show how the following calculations would be performed using an eight bit register with the point fixed between bit 3 and bit 4.

	i)	8.5 + 4.25

	ii)	10.125 + 2.75

	iii)	6.5 + 6.5

b)	Show how the following calculations would be performed using an eight bit register with the point fixed between bit 4 and bit 5:

	i) 	3.5 + 5.25

	ii)	2.5 + 2.75

	iii)	2.2 + 3.4	(this shows the limitation of the chosen register)

c)	What is the highest value that can be stored in each of the above registers?

�
Floating Point Arithmetic

We have shown the limitation of fixed point arithmetic:

 a) The values are integers only.

 b) The range is limited to the size of the register holding the value.

In order to be able to use the computer for scientific operations we need to store and manipulate very large and very small real numbers. ('real' numbers have fractional parts, i.e. 21.5, 234.075, etc).

In the decimal system all numbers can be expressed as a power of ten; this is called Standard Form:

 One hundred can be expressed as

 100 = 1 * 102

 One million can be expressed as

 1,000,000 = 1 * 106

 Thirty five million, one hundred thousand can be expressed as:

 35,100,000 = 3.51 * 107

 3.51 is called the mantissa

 the 7 is called the exponent.

Any number can be expressed relative to its number base. Computers make use of this principle to store floating point numbers.

These numbers are obviously expressed relative to base 2

	 Decimal	Binary 		Standard Form

 	13.75 	1101.11 	.110111 * 24

 	

	4.5 	100.1 	.1001 * 23

	

	0.25 	0.01 	.1 	* 2-1

Requirements:

a) A register large enough to hold all the significant digits of the number (Mantissa)

b) An Additional register to indicate the position of the point (Exponent).

Floating point numbers are stored in a 16 bit word as standard.

The MANTISSA takes up 10 bits and the EXPONENT takes up 6 bits.

Negative numbers are stored in twos complement.

Example

Convert decimal 6.75 to binary standard form.

 decimal binary standard form

 6.75 110.11 .11011 * 23

 Note that the most significant bit is reserved as the sign bit.

 becomes MANTISSA 	0110100000 10 bits

 		 	|

 			sign bit

 EXPONENT 		000011 6 bits

 			|

 			sign bit

 Stored as 	0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1

 	========

			mantissa exponent

Exercise 3.2

Using a 16 bit word: 10 bit mantissa with 6 bit exponent (with twos complement for negative numbers) prove that:

a)	1.01		is 	0101000000 000001

b)	11011.001 	is 	0110110010 000101

c)	1001.1011 is 	0100110110 	000100

d)	1110111.01 	is 	0111011101 000111

e)	-101		is	1010111111 000011

	1st step std frm 	= -.101 *2^3

	2nd step 10 bits	= -0101000000		exp 6 bits = 000011

			ones	= 1010111111

					 1 +

			twos	 1010111111

f)	-11.11 is 1000100000 000010

g)	-1.1		is 1010000000 000001

h)	0.00111 is 0111000000 111110

Normalisation.

In order to give greater precision (accuracy) the first bit after the sign bit is always 1. It would be a waste of precision to include leading zeros.

To normalise a number:

 a) The computer will move the binary point of the mantissa left

 or right until the number is normalised.

 b) The exponent will be adjusted accordingly.

Example

 0.125 = 0.001 * 20 not normalised

 Shift mantissa left 0.01 * 2-1 not normalised

 & subtract 1 from

 exponent

 Shift mantissa left 0.1 * 2-2 NORMALISED

 & subtract 1 from

 exponent

In the computer this would look like this:

 				MANTISSA EXPONENT

If the result of a calculation is 			0001100101 000001

SHIFT LEFT 1 PLACE ADJUST EXPONENT 	0011001010 000000

SHIFT LEFT 1 PLACE ADJUST EXPONENT 	0110010100 111111

Exercise 3.3

Normalise the following:

 MANTISSA EXPONENT

 a) 0001010001 000110

 b) 0000011101 000100

 c) 0001010010 000101

 d) 0010111111 111000

The IEEE Standard

The IEEE (Eye-triple-E) standard states an alternative method of storing floating point numbers. The sign bit is still stored in the MSB but the exponent and mantissa swap places.

	Sign	Exp.	Mantissa

	 0 0100 11001

	positive .11001 * 2^4

		= 1100.1

		= 12.5

Exercise 3.4

State the value stored in the following registers for both the standard method and IEEE method of floating point storage:

a) 	 00101111111

b) 	10100101011

c)	01010110011

datarep3/�

