Data Representation III











 How do we represent fractions in a computer???








Fractional binary postions :
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The rules for converting decimal fractions to binary are:





        Repeat


              Multiply FRACTION by 2 giving RESULT.


              Move the whole number from RESULT to ANSWER.


              Move fractional part of RESULT to FRACTION.


        Until required precision is reached.








From the table we know that decimal 0.25  is binary 0.01





To prove it:





        FRACTION             RESULT                ANSWER


        0.25      *  2        		0.50                   0


        0.50      *  2        		1.00                   1


        0.00





                                                   Read down = 0.01





Example  convert the decimal fraction 0.15 to binary to four places.





        FRACTION             RESULT                ANSWER


        0.15      *  2        		0.30                   0


        0.30      *  2        		0.60                   0


        0.60      *  2        		1.20                   1


        0.20      *  2       		0.40                   0





                                                   Read down = 0.0010








Exercise 3.1


Prove that          Decimal   =  binary


                      a)   0.75		0.11


                      b)   0.625       	0.101


                      c)   2.25       	10.01











Fixed Point Arithmetic





One method of  storing 'real' numbers (ie numbers with fractional parts) a fixed position for  the decimal point is chosen. In the example below the point is fixed between bit 2 and bit 3.
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Note. Only by knowing the fixed position of the point can you determine the value of the number stored. The programmer must keep track of the position of the point. 











Exercise


a)	Show how the following calculations would be performed using an eight bit register with the point fixed between bit 3 and bit 4.


	i)	8.5 + 4.25


	ii)	10.125 + 2.75


	iii)	6.5 + 6.5








b)	Show how the following calculations would be performed using an eight bit register with the point fixed between bit 4 and bit 5:


	i)   	3.5 + 5.25


	ii)	2.5 + 2.75


	iii)	2.2 + 3.4	(this shows the limitation of the chosen register)








c)	What is the highest value that can be stored in each of the above registers?








�
Floating Point Arithmetic








We  have  shown the limitation of fixed point arithmetic:





        a)   The values are integers only.


        b)   The range is limited to the size of the register holding the value.








In order to be able to use the computer for scientific operations we need to store and manipulate very large and very small real numbers.  ('real' numbers have fractional parts, i.e. 21.5, 234.075, etc).








In the decimal system all numbers can be expressed as a power  of ten; this is called Standard Form:





        One hundred can be expressed as


                                    100    =  1 * 102





        One million can be expressed as


                               1,000,000   =  1 * 106





        Thirty five million, one hundred thousand can be expressed as:


                              35,100,000   = 3.51    * 107





        3.51 is called the mantissa


        the 7 is called the exponent.





Any number can be expressed relative to its number base. Computers make use of this principle to store floating point numbers.





These numbers are obviously expressed relative to base 2





	 Decimal	Binary 		Standard Form


 	13.75         	1101.11        	.110111  * 24


  	


	4.5           	100.1         	.1001    * 23


	


	0.25            	0.01        	.1       	* 2-1








Requirements:





a)   A register large enough to hold all the significant digits of the number (Mantissa)





b)   An Additional register to indicate the position of the point (Exponent).





Floating point numbers are stored in a 16 bit word as standard. 


The MANTISSA takes up 10 bits and the EXPONENT takes up 6 bits.


Negative numbers are stored in twos complement.











Example


Convert decimal 6.75 to binary standard form.








               decimal     binary        standard form





               6.75        110.11        .11011  * 23








 Note that the most significant bit is reserved as the sign bit.








        becomes      MANTISSA   	0110100000   10 bits


                               		 	|


                                			sign bit





                     EXPONENT   		000011        6 bits


                                			|


                                			sign bit








        Stored as   	0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1


                    		..............................========


			mantissa                    exponent





Exercise 3.2


Using a 16 bit word: 10 bit mantissa with 6 bit exponent (with twos complement for negative numbers) prove that:


a)	1.01		is 	0101000000     000001


b)	11011.001    	is     	0110110010     000101   


c)	1001.1011       is  	0100110110  	000100


d)	1110111.01   	is       	0111011101    000111





e)	-101		is	1010111111     000011


	1st step  std frm    	= -.101   *2^3


	2nd step 10 bits	= -0101000000		exp 6 bits = 000011


			ones	=  1010111111


					          1  +


			twos	    1010111111





f)	-11.11              is  1000100000  000010


g)	-1.1		is   1010000000  000001





h)	0.00111             is  0111000000  111110





Normalisation.








In order to give greater precision (accuracy) the first bit after the sign bit is always 1. It would be a waste of precision to include leading zeros.





To normalise a number:





        a)   The computer will move the binary point of the mantissa left


             or right until the number is normalised.





        b)   The exponent will be adjusted accordingly.





Example








        0.125      =            0.001  * 20      not normalised





        Shift mantissa left     0.01   * 2-1     not normalised


        & subtract 1 from


        exponent





        Shift mantissa left     0.1    * 2-2     NORMALISED


        & subtract 1 from


        exponent








In the computer this would look like this:





                                              				MANTISSA         EXPONENT





If the result of a calculation is     			0001100101       000001


SHIFT LEFT 1 PLACE ADJUST EXPONENT    	0011001010       000000


SHIFT LEFT 1 PLACE ADJUST EXPONENT    	0110010100       111111











Exercise 3.3





Normalise the following:


              MANTISSA     EXPONENT


        a)    0001010001   000110





        b)    0000011101   000100





        c)   0001010010   000101





        d)  0010111111    111000





The IEEE Standard











The IEEE (Eye-triple-E) standard states an alternative method of storing floating point numbers. The sign bit is still stored in the MSB but the exponent and mantissa swap places.





	Sign	Exp.	Mantissa


	 0        0100      11001





	positive     .11001   * 2^4


		=   1100.1


		=    12.5











Exercise 3.4


State the value stored in the following registers for both the standard method and IEEE method of floating point storage:





a)  	 00101111111





b)  	10100101011





c)	01010110011
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