

Data Representation II

Number Base Addition

Addition in different number bases operate in the same ways as for decimal but remember that the highest value possible in each position is one less than the base value.

Addition

 Decimal	Binary 		 Octal 	 Hex

		5 		101		5 		5

		6 + 	110 + 	6 + 		6 +

 11 	 1011 13 		B

 1 	 1 	 1

 Decimal 	Binary 	 Octal 	 Hex

		25	 11001 	31 		19

		21 +	 10101 + 	25 + 		15 +

		46 101110 	56 		2E

		 1 1

Subtraction

All mathematical operations take place as a form of addition!

The computer does not actually do subtraction!

Subtraction is achieved by 'complementing' the number to be subtracted and then adding the numbers.

What is complementing?

 "The complement of a number is the value which when added to

 the original number gives a value equal to the highest

 available digit of the number base."

 Is that clear?

In the decimal system the complement of 2 is 7 because 2+7 gives 9. Nine is the highest available digit, so 7 is the nines complement of 2, and vice versa.

In the binary system the complement of 1 is 0 because 1+0 gives 1. One is the highest available digit, so 0 is the ones complement of 1, and vice versa.

 So the ones complement of 	1110101

 is 		0001010

Within the computer, however, TWO's complement is used. To find the twos complement simply add 1 to the one's complement.

 Value 		1110101

 ones complement	0001010

 add 1 		1 +

 twos complement 	0001011

Subtraction example

 In decimal 5-2 = 3

In binary the numbers must be expressed as equal length numbers (add leading zeros if needed) and so must the answer. Any final carry is ignored.

 5= 101 			101

 3= 011 ones complement 	100

 		 1 +

 twos complement 	101 new sum 101 +

 			010 						 1 carry ignored

 final answer = 010 = decimal 2

Exercise 2.1

prove that	a) 10 -2 = 8 d) 32 -26 = 6

 	b) 12 -7 = 5 e) 45 -25 = 20

 	c) 16 -8 = 8 f) 59 -33 = 26

�
Fixed Length Computer Words

Data of any sort is represented in the computer in BITS, as a series of zeros and ones.

 A BIT is either 0 or 1.

 Eight BITS equal one BYTE.

A WORD equals the number of BITS which the computer treats as a single unit, i.e. "the word length is 16 bits." or "the word length is 32 bits.", etc. We shall use an 8 bit word for the time being.

Within the CPU data is held in registers. An 8 bit register holds, not surprisingly, 8 bits.

The ascii code for A is 65. If this were stored in an 8 bit register:

 01000001

The decimal value 7 is binary 111. If this were stored in the computer in an 8 bit word leading zeros would be added to become:

 00000111

To perform the decimal sum 14 + 5 using an 8 bit register:

 14 Becomes	00001110

 5 Becomes	00000101 +

 	00010011 = 19

�
Representation of Negative Numbers

In the decimal system a negative number has a minus (-) sign in front of it, i.e. -7. But the registers can only store 0 or 1.

Methods used to represent signed numbers:

a) Signed magnitude

 In the decimal system a sign may be placed in front of the

 number to indicate positive or negative.

 85 or +85 is positive

 -85 is negative

 There is a sign and the magnitude of the number.

 In each register the most significant bit (MSB) is the left most

 digit. This is used to represent the sign of the number. 0

 means it is positive, and 1 means it is negative. The rest of the

 bits are used to represent the value.

 The weighting of the digit positions becomes:

	�EMBED MSDraw.1.01���

 To represent -85 in an 8 bit register:

 +85 = 01010101 MSB is 0 = positive

 -85 = 11010101 MSB is 1 = negative

	�EMBED MSDraw.1.01���

 neg 64 + 16 + 4 + 1 = -85

b) Radix (or base) complement

 We have used this already in the example of subtraction.

 The weighting of the digit positions changes:

	�EMBED MSDraw.1.01���

 This is best shown as an example:

 To represent -85 in an 8 bit register:

 +85 = 01010101 MSB is 0

 10101010 The ones complement

 	 1 + Add one for the

 10101011 twos complement

	�EMBED MSDraw.1.01���

 -128 + 32 + 8 + 2 + 1 = -85

Exercise 2.2

 Represent the following numbers in sign magnitude and twos complement in an 8 bit register:

 a) 32		b) -1		c) 52

 d) -99 e) 110 f) -64

Range Limitation Numbers

The range of values that can be represented is limited by the size of the register used. There is the possibility that the result of an operation will produce a result that is too large or small to be represented in the available registers. The technical term for this is 'overflow'. Multiple register could be used but this involves using more memory and more complex processing.

For an 8 bit register:

 Sign magnitude:

 Max positive 01111111 = 127

 Min negative 11111111 = -127

 For twos complement:

 Max positive 01111111 = 127

 Min negative 10000000 = -128

You can calculate the range of a register when using twos complement with the following formula:

 Max = 2(n-1) -1

 Min = -2(n-1)

 Where n is the number of bits in the register

 i) for an 8 bit register

 Max 27-1 = 127

 Min -27 = -128

 ii) for a 16 bit register

 max

 min

 iii) For a 32 bit register

 max

 min

A 16 bit word (register) is standard for integer. However, for greater precision (double precision) two words may be used.

Range for single precision (16 bit word) = -32,768 to 32,767

Range for double precision (2 words) = -2,147,483,647 to 2,147,483,646

datarep2/�

