�

What is Assembly Language

The earliest computers were programmed directly in machine language. Each instruction was written in its binary code, and each cell in memory allocated for a specific purpose. This made programming a slow and difficult task. A single error often meant rewriting large portions of a program. To simplify and speed up this process, and to enable more people to use computers, a new type of programming language, called assembly language, was devised.

Assembly language instructions still control the hardware of a computer directly; thus each type of computer has its own assembly language. Machine language and assembly language are together known as low-level languages.

An assembly language is designed to be a simple way of programming a computer while still working directly with its hardware features. It relates closely to the machine language of the computer (for every machine instruction there is a corresponding assembly language instruction).

An assembly language instruction consists of a small code word (mnemonic), for the operation code and where necessary, a short sequence of characters (symbolic address) for the memory address.

Example

Machine Language (hex)	Assembly Language	Meaning			

00010010 10100100		MOV AH,1Fh	Move the hex value 1F to the AH (hex 12 A4)							register.

00011010 10110010		INC AH	 Increment the value in the AH 	

(hex 1A B2)						register

�
The Central Processing Unit (Processor)

�EMBED MSDraw.1.01���

The diagram above shows a typical microcomputer controlled system.

The Processor implements the instructions of the CPU on a single chip.

The PROCESSOR includes:

	the ALU plus its internal registers

	a Control Unit which decodes and internally sequences instructions.

There are three buses (address bus, data bus and control bus) which carry data and instructions between registers and input/output devices.

ROM (read only memory) - contains the 'bootstrap' code that runs when the system is switched on. Such code initialises the system and performs a self check on components. This code is permanent (can not be erased or overwritten). Note that in a process-control system (like a petrol pump, washing machine, etc.) all programs are held in ROM.

RAM (Random Access Memory) -initially empty it is used to hold the programs and data being processed by the processor. The code in RAM is not permanent, ie, a program in RAM can be overwritten with a new program (as happens when the user closes one program and loads another).

Input/Output Interface -allows communication between the system and the external world.

�
THE BUSES

Address Bus

	This is the path for communication between the processor and ROM, RAM and I/O.

Data Bus

	This is the path the data takes from the processor to the ROM, RAM and I/O.

Control Bus

	Carries the instructions that tell each component whether to receive or send data on the other two buses.

The processor automatically controls each bus keeping all operations in step. However, it is the programmers job to provide the correct instructions, data and memory addresses to the system.

The width of each bus differs from system to system. Typically:

 	the width of the data bus is 16 wires: therefore 16 bits.

 	the width of the address bus is 20 wires: therefore 20 bits.

 	the width of the control bus is 5 wires:therefore 5 bits.

The CPU (processor)

�

Control Unit

Synchronises the system hardware (timing).

Arithmetic Logic Unit (ALU)

Performs all arithmetic and logic operations. Special resisters called accumulators are connected to the output of the ALU. The store the results of arithmetic operations. The ALU also provides shift and rotate functions which make use of the shifter to move the contents of the registers left or right (inserting an appropriate zero). The Status Flags (also called the condition flags) are set after each operation - there is a condition flag which is set when an operation (ie an addition) produces a carry. The processor will alter its execution based on the values in the status flags.

Accumulators

General purpose registers used to manipulate data.

Address Registers

Store addresses to be sent on the address bus. For example a location in memory - either to read data to the accumulator; or to write data from the accumulator.

Stack Pointer

	The Stack is a set of memory locations. It operates on the principle of Last-in-first-out (LIFO). A PUSH instruction places an item on to the stack -a POP instruction removes an item from the stack.

	The Stack Pointer contains the address in memory of the top of the stack.

 Index Registers

	Indexing is a memory addressing method used to access blocks of data. An Index register typically contains an offset value which is added to a base value (ie start of the block). Indexing is used to read items from within a block of data.

Segment Registers

	A program is divided into four segments:

	Code segment (program code); data segment (program data/variables); stack segment (pop/push for procedures & function); and extra segment (more variables/data).

	So there are four segment registers. Each segment register is 16 bits in length and has a particular name:

		Code Segment	CS

		Data Segment	DS

		Stack Segment SS

		Extra Segment	ES

	

Program Counter

	Contains the address of the next instruction to be executed. Instructions will normally follow one after the other so the PC is incremented after each instruction (unless the last instruction was a branch).

The Internal Registers

�EMBED MSDraw.1.01���

Each register is 16 bits wide

There are three groups:

The Data group

	Labelled AX, BX, CX, DX. They can be used as single 16 bit registers or as two 8 bit registers. When used as 8 bit registers they are divided into an upper (H) and lower (L) half, labelled AH & AL, BH & BL, CH & CL, DH & DL.

The Pointer & Index group

	Used as 16 bit registers only. They are labelled SP, BP, SI and DI.

The Segment group

	These registers are labelled CS, DS, SS and ES.

�

Self Test Questions

1	State one reason why assembler language was first devised.

2	Explain the term Mnemonic.

3	Describe the function of each of the internal buses.

4	Explain the role of the Status Flags.

5	Explain the role of each program segment.

6	The instruction for a graph plotter are coded into groups of 8 bits. The 8 bits are split into a 3 bit operation code and 5 bit size -where size is the unit of movement.

The table below gives details of operation codes:

Op.Code	mnemonic	Meaning

000		NL 		Do nothing

001		PD		Pen down

010		PU		Pen up

011		LT		Move left

100		RT		Move right

101		UP		Move up

110		DN		Move down

111		ST		Go to starting point

e.g. 011 00110

 LT 6 meaning move left 6 squares.

For the following machine code write out the mnemonic and its meaning, then draw a grid 5 x 5 and using the bottom left corner as the starting point create the shape.

Code			Mnemonic		Meaning			

01000000		

10000010		

10100100		

00100000		

10000011		

11000010		

01100011		

10100011		

10000010		

11000011		

01000000		

11100000		

�

asm1		Intro to Assembler � of 7

Introduction to Assembly Language

�EMBED MSDraw.1.01���

Status Flags

These bits are set after each operation in the ALU.

i.e. Arithmetic Overflow , Sign, Zero result, Carry in for next addition, Parity ,Carry Out to next addition

The program can test the status of a flag to determine a programs next action.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

